Kuwait University Math 101 Date: December 14, 2006
Dept. of Math. & Comp. Sci. Second Exam Duration: 90 minutes

Calculators, mobile phones, pagers and all other mobile communication equipment are not allowed

Answer the following questions:

1. Use differentials to approximate
$$1 - \frac{1}{\sqrt[3]{8.01}}$$
. (4 pts.)

2. Find an equation of the tangent line to the curve of

$$2y + y^2 \tan x + \sin(x^2 y) - 2 = 0, \text{ at } x = 0.$$
 (4 pts.)

(1 pt.)

- 3. As a right circular cylinder is being heated, its radius is increasing at a rate of 0.04 mm/sec and its height is increasing at a rate of 0.15 mm/sec. Find the rate at which the volume of the cylinder is changing when the radius is 0.5 mm and the height is 0.3 mm. (4 pts.)
- 4. (a) State The Mean Value Theorem.

(b) Let
$$f'(x) = \frac{1}{3+2x^2}$$
, for all real number x and $f(1) = 0$. Show that $\frac{1}{11} < f(2) < \frac{1}{5}$. (4 pts.)

5. Let
$$f(x) = \frac{x}{x^2 - 1}$$
 and given that $f'(x) = -\frac{x^2 + 1}{(x^2 - 1)^2}$ and $f''(x) = \frac{2x(x^2 + 3)}{(x^2 - 1)^3}$.

- (a) Find the vertical and horizontal asymptotes for the graph of f, if any.
- (b) Find the intervals on which f is increasing and the intervals on which f is decreasing. Find the local extrema of f, if any.
- (c) Find the intervals on which the graph of f is concave upward and the intervals on which the graph of f is concave downward. Find the points of inflection, if any.
- (d) Sketch the graph of f. (8 pts.)

1. Take
$$x_0 = 8$$
, $\Delta x = 0.01$ & $f(x) = 1 - \frac{1}{\sqrt[3]{x}} \implies f'(x) = \frac{1}{3x^{\frac{4}{3}}}$, $f(8) = \frac{1}{2}$, $f'(8) = \frac{1}{48}$
Thus: $1 - \frac{1}{\sqrt[3]{8.01}} \simeq f(8) + f'(8)(0.01) = \frac{1}{2} + \frac{1}{48}(0.01) = 0.50021$

- 2. At x=0, y=1. Differentiate w.r.t $x \implies 2y+y^2\tan x+\sin(x^2y)-2=0$ $2y' + 2yy' \tan x + y^2 \sec^2 x + (2xy + x^2y') \cos(x^2y) = 0 \implies y'_{1/0,1} = -\frac{1}{2}$ Equation of tangent line: $y - 1 = -\frac{1}{2}x$ or x + 2y - 2 = 0
- 3. $V = \pi r^2 h$. Differentiate w.r.t. t, $\frac{dV}{dt} = \pi \left(2rh \frac{dr}{dt} + r^2 \frac{dh}{dt} \right) \implies \frac{dV}{dt} \Big|_{\substack{r=0.5 \\ k=0.2}} = 0.0495 \text{ mm}^3/\text{sec.}$
- 4. (b) $f'(x) = \frac{1}{3+2x^2}$ exists for all $x [3+2x^2 \neq 0]$. Then f is continuous for all x. Thus, f is continuous on [1,2] and differentiable in (1,2). From The Mean Value Theorem, $\exists c \in (1,2)$ such that $f(2) - f(1) = f'(c)(2-1) \implies f(2) - 0 = \frac{1}{3+2c^2}(2-1) \implies |f(2)| = \frac{1}{3+2c^2}$ As $1 < c < 2 \implies 1 < c^2 < 4 \implies 5 < 3 + 2c^2 < 11 \implies \frac{1}{5} > \frac{1}{3+2c^2} > \frac{1}{11}$.
- 5. $D_f = \mathbb{R} \{-1, 1\}, f(0) = 0.$ $f(-x) = -f(x) \implies f$ is odd function and the graph of fis symmetric about the origin.
 - (a) $\lim_{x \to \infty} f(x) = \pm \infty \implies x = 1$ is V. A. & f has infinite discontinuity at x = 1. $\lim_{x\to 1} f(x) = \mp \infty \implies \boxed{x = -1 \text{ is V. A}}$ & f has infinite discontinuity at x = -1. $\lim_{x \to +\infty} f(x) = 0 \implies \boxed{y = 0 \text{ is H. A.}}$ $f(x) = 0 \implies x = 0$. The graph of f intersects the H.A (y = 0) at x = 0.
 - (b) $f'(x) \neq 0 \& (f \text{ has infinite discontinuity at } x = \pm 1$, where f'(x) does not exist.).

I	$(-\infty, -1)$	(-1,1)	$(1,\infty)$
sign of $f'(x)$	-	_	_
Conclusion	>	\	

f is decreasing on $(-\infty, -1) \cup (-1, 1) \cup (1, \infty)$. f has no local extremum.

(c) $f''(x) = 0 \implies \boxed{x = 0}$ (f is not continuous at $\boxed{x = \pm 1}$, where f''(x) does not

1	$(-\infty, -1)$	(-1,0)	(0,1)	$(1,\infty)$	
sign of $f''(x)$	_	+		+	$\implies (0,0)$ is a point of in-
Concavity	CD	CU	CD	CU	
flection.					-

